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ABSTRACT 

A characterization of remote points in fiR is given by means of prime z-filters 
and is generalized to z-filters on arbitrary completely regular Hausdorff 
spaces X and to subsets of fiX. 

1. Introduction. An interesting topological feature of the Stone-~__,ech compac- 

tification fiR of the real line is the existence of a remote point in fiR, i.e., a point 

not in the closure of any discrete subset of R. Other characterizations and proper- 

ties of remote points are given in [1], [6], [7] and [8]. The existence of remote 

points in fiR has been demonstrated, assuming the continuum hypothesis, in [1] 

and in [8]. The present paper was motivated by the following characterization of 

remote points. 

TrmOREM. A prime z-filter ~ on R has the property that for every Z e ~  

there exists We ~ such that W ~_ int Z if and only i f  ~ = ,gP for some remote 

point p in fiR. 

The proof will be given in Section 2. For terminology and notation see [2]; 

we use .#/v and CP to denote the z-filters Z[M v] and Z[OV]. We generalize the 

property of the theorem to an arbitrary completely regular Hausdorff space X as 

follows. 

DEFINmON. A z-filter~" on X will be called round if for every Z e ~" there is 

We ~ and a cozero-set S in X such that W = S ~ Z. 

The term " round"  is borrowed from [5]. It is used in [10] in connection with 

proximity spaces. In fact, round z-filters are just the intersections with Z(X) of 

the round filters on X with respect to the proximity induced by fiX. In the case 

of the real line, every open set is a cozero-set, so our condition reduces to that of 

the theorem above. 
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The basic properties of  round z-filters will be obtained in Section 3. Round 

subsets of fiX are introduced in Section 4; they are related to an interesting class of  

round z-filters. In Section 5 we find that every G~ in f X  that does not meet X is a 

round subset of fiX, and we relate this result to the family of continuous functions 

with compact support. 

2. Round prime z-filters on the real fine. In the proof  of the theorem stated in 
the introduction we shall need some results from [6] which we restate in the 
first two lemmas below. 

LEMMA 2.1. A prime z-filter on R is minimal i f  and only i f  each of its 

members has nonempty interior. [6, Theorem 8.1]. 

LEMMA 2.2. A point p in fiR is a remote point i f  and only if the z-ultrafilter 

.1.[ p is a minimal prime z-filter. (Part of  [6, Theorem 11.2].) 

Lemma 2.1 shows that a nonminimal prime z-filter on R has a nowhere dense 

member. We shall also need the following stronger result. We use the symbol 

c to denote proper inclusion. 

LEMMA 2.3. I f  ~ and.~ are prime z-filters on R with ~ c  ~, then there exists 

Z 6 ~ such that bdry Z6.~. 

Proof. Since .~ is nonminimal, we may choose a nowhere dense F~-~. By 

enlarging F slightly if necessary (e.g., by adjoining the integers), we may assume 

that all the components of  R - F are bounded. Let U be the union of all the left 

open thirds of these components, and V of the right. Since el U contains the set 

of left endpoints, which is dense in F, we have F ~ clU, and similarly for V. 

Let Z and W be the complements of U and V in R. Since U and V are disjoint, 

we have Z U W = R. Say Z ~ ~ .  Since F _ cl(R - Z), we have F ¢~ Z c bdry Z 

and hence bdry Z e.~. 

The proof also shows that on the real line every nowhere dense set is regularly 

nowhere dense in the sense of  [3]. (The author wishes to thank Jack R. Porter 

for this remark and also for a simplification included in the above proof.) 

THEOREM 2.4. A prime z-filter ~ on R is round if and only i f  ~ = .I f  v for  

some remote point p in fiR. 

Proof. Let ~ be round. Suppose ~ c .~ for some (prime) z-filter .~. Choose 

Z ~ ~ such that bdry Z ~.~ and choose We ~ such that W ~ int Z. Then .~ contains 
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the disjoint sets W and bdry Z, which is absurd. Hence 3 ~ is a z-ultrafilter and 

= ./#v for some p E ~R. Since ~ is clearly minimal, p is a remote point. 

Conversely, let ~ = .~¢ Pfor a remote point p. Let Z E ~ .  Since ~ is minimal, 

bdry Z ~ ~ .  Thus, since ~ is a z-ultrafilter, there is F E ~ with F n bdry Z = ~ .  

Hence W = F c3 Z _~ int Z. 

3. Round z-filters. In this section we develop the basic properties of round 

z-filters. An auxiliary result is the determination in Theorem 3.5 of the z-filters 

on X with a prescribed set of cluster points in /~X. 

DErINmo~q. For any z-filter ~" on X, we denote by ~ o  the family of all zero- 

sets Z in X such that there is a member Wof  ~- and a cozero-set S in X such that 

W c _ S ~ _ Z .  

LEM~ 3.1. For any z-filter ~ ,  the fami ly  ~ o  is a round z-filter; ~r is 

round if  and only i f  ~ = ~o .  

Proof. It is easy to verify that .~o is a z-filter. Let Z E ~-o and choose WE ~" 

and a cozero-set S such that W _ S __q Z. Since Wand X -  S are disjoint zero-sets, 

they are completely separated. Hence by [2, 1.15(a)] there is a zero-set F and a 

cozero-set T such that W ___ T _ F _ S ___ Z. Hence F E ~ o ;  this shows that ~ro 

is round. The last statement is clear. 

We adapt the notation of ['2, 70]  to z-filters as follows. 

DEFI~TIOlq. For any z-filter ~" on X, we denote by 0(~)  the set of all cluster 

points of ~- in /~X. That is, 

0(~ r )  = C~z~dpxZ = {p E/~X: ~" _ .~'~}. 

Every nonempty dosed subset A of/~X is of the form 0(~-); for example, we 

may take ~ = {Z EZ(X): A ___ dDxZ } --- C3waJg p. 

The following useful result arises in the proof of ['2, 70.2]. 

LI~MMA 3.2. I f  ¢~ is any z-filter on X and Z is a zero-set in X such that 

clpxZ is a neighborhood of 0 (~) ,  then there exists WE ~r such that clpxZ is a 

neighborhood of dpxW. 

Proof. The family of all sets of the form clpxW, where WE ~' ,  is dosed under 

finite intersection and has intersection 0(~'). Since 0(~ r) t'3 ( ~ X -  intpxclpxZ) = ~ ,  

by compactness there is WE ~ s u c h  that clpx We3 ([JX- in taxc lBxZ ) = j~. 

Trr~og~ 3.3. I f  ~ is any z-filter on X ,  the following are equivalent. 

(a) ~ is a round z-filter. 
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(b) For every Z E ~  there is W e ~  such that clpxZ is a neighborhood of 

cl~xW. 

(c) For any p~flX,  ~ ~ ~¢[P implies ~ ~ 0 p. 

(d) For every Z ~ ,  clpxZ is a neighborhood of 0(~). 

Proof. (a) is equivalent to (b) by [-2, 7.14]. 

(b) implies (c). I f  Z ~  and W is chosen as in (b), then W~dg'P; hence 

p~clpxW, clpxZ is a neighborhood of p, and Zed~ p. 

(c) implies (d). If  p~O(°J), then ~ - _  ./gP; hence ~ _  0 p and clpxZ is a 

neighborhood of p. 

(d) implies (b). Lemma 3.2. 

We now determine which z-filters on X have a prescribed set of cluster points 

in fiX. The lemma below extends I2, 7H.1]. The theorem generalizes [-2, 7.13]; 

the necessity is [2, 70.2]. 

LEMMa 3.4. Any closed subset A of fiX has a base of neighborhoods of the 

form cl~x Z with ZEZ(X).  

Proof. I f  U is any open neighborhood of A in fiX, then A and f i x -  U are 

completely separated. Hence there is a zero-set-neighborhood W of A in fiX with 

W ~ U. Put Z = W n X .  Then Z~Z(X)  and claxZ is clearly a neighborhood 

of A that is contained in U. 

THEOREM 3.5. Let A be any closed subset of fiX. For any z-filter ~ on X, we 

have 0 ( f f ) = A  if  and only if  Np~a(gP~_~_ Op ~A~  l'. 

Proof. Let 0(~-) = A. If  Z~  np~a¢ p then clpxZ is a neighborhood of 0(~) .  

Thus by Lemma 3.2 there is We ~" such that clax Z contains clpxW; hence W _~ Z 

and so Z e ~' .  Conversely, we clearly have A ~_ 0(~'). By Lemma 3.4, 0(rip ~ a¢ p) 

= A and hence 0(~-)_  A. 

By means of the next two results we completely characterize round z-filters in 

terms of intersections of the z-filters CP. 

TheOREM 3.6. For any z-filter ~ on X, we have ~ o  = Np~o(~d)r 

Proof. Z e ~ o  if and only if there is W ~ ~ such that W _ S _ Z for some 

cozero-set S in X; equivalently by 1'2, 7.14], such that clpxZ is a neighborhood of 

clpx W. Also, Z~  ~ 0 ( ~ ) ¢  ~ if  and only if claxZ is a neighborhood of 0(~-); 

equivalently by Lemma 3.2, a neighborhood of claxW for some W ~ ~' .  
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THEOREM 3.7. I f  .~ is a round z-filter on X, then ~ = Np~o(a~$ p. Conversely, 

if A is any nonempty closed subset of fiX, then ~p~,4¢ p is a round z-filter; these 

are distinct for distinct closed sets A. 

Proof. The first statement follows from Lemma 3.1 and the last theorem. 

Now let A be a nonempty closed subset of fiX and put ~ = (3wA0P. By Theorem 

3.5, 0(~-) = A and hence ~- is round by Theorem 3.3(d). The last statement also 

follows from Theorem 3.5. 

COROLLARY 3.8. A-o np~ad) p is a one-one order-reversing correspondence 

between the nonempty closed subsets of fiX and the round z-filters on X. 

COROLLARY 3.9. A round z-filter is a z-filter that is minimal with respect to 

its set of cluster points. 

If  ~ is a prime z-filter, then 0(~) has just one point; hence every round prime 

filter is 0 p for some p e fiX. Since on the real line 0 p is prime if and only if p is a 

remote point in f i r  I-6, Theorem 11.2], this provides another proof of Theorem 

2.4. Alternatively, Theorem 3.3(c) could be used. However, Lemma 2.3 and the 

direct proof given in Section 2 are of independent interest and do not require the 

stronger result from 1-6] that if 0 Pis prime then p is a remote point. In fact, Section 

2 and Theorem 3.7 provide another proof of this result. 

4. Round subsets of fiX. Lemma 2.2 shows that p is a remote point in fl R 

if and only i f  .////P = t9 p, i.e., for any Z~Z(R) ,  if ClpRZ contains p, then it is a 

neighborhood of p. In Section 2 we found the relation between remote points 

and round prime z-filters. We now generalize the above characterization of remote 

points, obtaining a class of subsets of fiX which is related to a larger class of 

round z-filters. 

D~FINmON. A subset A of fiX will be called a round subset of fiX if for any 

Z eZ(X),  if clpxZ contains A, then it is a neighborhood of A. 

We collect in the next theorem some immediate properties of round subsets. 

THEOREM 4.1. Let A ~_ fiX. 

(a) A is a round subset of fiX if and only if r~p~,~J/p= (~p~A¢ ~ • 

(b) I f  clpx A is a round subset of fiX, then A is also round. 

(c) Every open subset of fiX is round. 

(d) Any union of round subsets of fiX is also round. 
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THEOREM 4.2. For any nonempty closed subset A of fiX, the following are 

equivalent. 

(a) A is a round subset of fiX. 

(b) ~p~Ad/p is a round z-filter. 

(c) no~A.~¢°= np~,t0 l'. 

(d) There is a unique z-filter ~ on X such that O(~-f) = A. 

Proof. (a) implies (b). We apply Theorem 3.3(d). Since A is closed, 

0(op~a./t 'p) =A.  For every ZE np~ad[ p, clpxZ contains A, and is hence a 

neighborhood of A. Thus r~p~aJ¢ p is a round z-filter. 

(b) implies (c). Since 0(np~aJ¢ p) = A, this follows from Theorem 3.7. 

(c) implies (a). Theorem 4.1(a). 

(c) and (d) are equivalent by Theorem 3.5. 

EXAMPLE 4.3. Let X be connected and let Z be any proper zero-set in X with 

nonempty interior. Let A be the interior of clpxZ and let B be the closure of A. 

Since A is open, it is a round subset o f fX .  Since f X  is connected, A is not closed. 

Hence clpxZ contains B but is not a neighborhood of B. Thus the closure of a 

round subset of fiX need not be round; i.e., the converse of Theorem 4.1(b) is not 

true. We also have np~A¢°~ Open0 p, whereas the corresponding z-filters 

using ..¢t 'p are equal for any A~_fX and any X. Furthermore, c~o~.4~ 'p is not 

round, since it is equal to np~ ndt'P which is not round by Theorem 4.2. Thus the 

hypothesis that A is closed in Theorem 4.2 ((a) implies (b)) may not be removed. 

Since A is round, we have np~aJt 'P= np~a¢ p and hence we see that opt , t0  p 

is not round. Thus the hypothesis that A is closed in the second part of Theorem 

3.7 may not be removed, even if A is round. Also, the intersection of a family of 

round z-filters need not be round. 

5. Functions with compact support. Theorem 8.19 of [2] (see also [9]) shows 

that when X is realcompact, the intersection of all the free maximal ideals in 

C(X) is the family CK(X ) of all functions with compact support. This property 

of a realcompact space may be restated in terms of round subsets of fiX. For 

any space X, I-2, 7El shows that cK(X)= np~px-x Op. Thus the following is 

immediate. 

THEOREM 5.1. The intersection of all the free maximal ideals in C(X) is the 

family  CK(X) of all functions with compact support if and only if  fiX - X  is a 

round subset of fiX. 
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Thus [2, 8.19] says that if X is realcompact, then fiX - X is a round subset of 

fiX. This will be generalized in Theorem 5.3 below. We first state a well-known 

lemma. 

LEMMA 5.2. The following are equivalent. 

(a) X is realcompact. 

(b) fiX - X is a union of zero-sets in fiX. 

(c) fiX - X is a union of G6-sets in fiX. 

Proof. (a) implies (b). I f  p e f i x  - X then M* Pcontains a unit of C [2, 7.9(b)], 

i.e., there is f 6 C*(X) such that p ~ Z ( f  p) and Z ( f  ~) ~_ f i x  - X. 

(b) implies (c). Trivial. 

(c) implies (a). The complement of a G6 is an F,, hence (in the compact space 

fiX) tr-compact and thus realcompact. Hence X is an intersection of realcompact 

subspaces of  fiX, and thus by Theorem 8.9 of [2] is itself realcompact. 

THEOREM 5.3. For any space X,  every G6 in f i x  that does not meet X is a 

round subset of fiX. 

Proof. It follows from the lemma that if a subset of fiX does not meet X and 

is a union of G~-sets, then it is a union of zero-sets. Thus, since the family of 

round subsets of fiX is closed under arbitrary unions, it suffices to prove the 

theorem in the case of a zero-set W in f i x  that does not meet X. Let W _ cl~xZ 

for some Z EZ(X). Put T = fiX - W, choose f E  C(flX) so that W = Z(f),  and put 

h = 1/f on T. Suppose W meets clBx(X - Z). Then h, which is continuous on ~I' 

is unbounded on X -  Z; thus X -  Z contains a noncompact set S that is C- 

embedded and closed in T [2, 1.20].Thus S is C-embedded in X and is thus comple- 

tely separated in X from the zero-set Z [2, 1.18]; hence S and Z have disjoint 

closures in fiX. Since S is closed in T but not compact we may choose 

p ~ clpxS - T. Thus p ~ W but p q~ clpxZ, contradicting our assumption concerning 

Z. It follows that W n clpx(X - Z) = ~ .  Thus W ~_ fiX - Clpx(X - Z) ~ clpxZ 

and clpxZ is a neighborhood of W. Hence W is a round subset of fiX. 

COROLLARY 5.4. For any space X,  f X -  oX is a round subset of fiX. 

Proof. Put Y = oX. Then Yis realcompact, so BY - Yis a union of Go-sets 

in ElY = f X .  Since these G~-sets do not meet X, they are round subsets of f X ,  

and hence their union f X -  oX is also a round subset of fiX. 

COROLLARY 5.5.[-2, Theorem 8.19]. I f  X is realcompact, then f X -  X is a 
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round subset of fiX; i.e., the intersection of all the free maximal  ideals in C(X) 

is the fami ly  C~(X) of all functions with compact support. 

I t  is shown in [4, 3.9] that  if  X is a P-space, then the intersection of  the free 

maximal ideals in C(X) is the family of  functions with compact support. This 

result may be extended as follows. 

THEOREM 5.6. X is a P-space i f  and only i f  every subset of  f iX is round. 

Proof.  X is a P-space if  and only if  . / / P =  ¢ P f o r  all p ~ f l X  [2, 7L.1]; the 

result thus follows from Theorem 4.1(a). 

EXAMPLn 5.7. For  any p ~ f l R -  R, it is clear that {p} is a round subset o f  

fiR if and only if  p is a remote point in fiR. Under the continuum hypothesis, 

the set F of  remote points in fiR is dense in fiR - R ([1, 2.5] or [8, 5.4]). Hence 

every (round) open subset of  fiR that meets f i R -  R contains a remote point, 

However, not every round subset of  fiR that meets fiR - R contains a remote 

point. For  example, the set A of points in fiR - R that are not remote points in 

fiR is also dense in fiR - R [1, 3.3]. By Corollary 5.5, ClaRA = fiR - R is a 
round subset of  fiR. Hence A is a round subset of  fiR but A contains no remote 

point. 
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